USN

M.Tech. Degree Examination, December 2011 Digital Circuits and Logic Design

Time: 3 hrs.

Note: Answer any FIVE full questions.

Max. Marks:100

a. Explain the concept of threshold logic.

(06 Marks)

b. Discuss the following:

i) Elementary properties; ii) Unite function.

(06 Marks)

- c. Show that a threshold logic realization of a full adder requires only two threshold elements. (Note: both sum and carryout must be generated). (08 Marks)
- 2 a. Explain the static hazard and hazard free-circuits, with example. (08 Marks)
 - b. What are critical and sub-critical errors? Determine the same for AND, OR, NAND, NOR and XOR gates. (06 Marks)
 - c. Explain the basic structure of a quadded network with the help of diagram. (06 Marks)
- 3 a. Explain restoring-organs.

(04 Marks)

b. Apply Boolean difference method to test wire 'h' in the circuit shown in Fig.Q.3(b).

(06 Marks)

c. For the circuit shown in Fig.Q.3(c), find all tests to detect the faults x₃, s-a-0 and s-a-1.

(10 Marks)

4 a. Write a note on fault-detection by path sensitizing.

(07 Marks)

- b. Explain the systematic generation of minimal fault-detection by generating b-tests. (07 Marks)
- c. List the capacities and limitations of finite state machines.

(06 Marks)

5 a. What are compatible states? For the tabular column Table Q.5(a) shown machine 'M'. Find the augmented machine and corresponding minimal machines. (10 Marks)

PS	NS, Z	
rs	x = 0	$\mathbf{x} = 1$
A	A, 0	C, 0
В	B, 0	В, -
С	B, 0	A , 1
T 11 () 5()		

b. What is merger graph? Draw the merger graph for the incompletely specified machine M shown in Table Q.5(b). (10 Marks)

PS	NS, Z			
гэ	I_1	I ₂	I ₃	I ₄
Α	-	C, 1	E, 1	B, 1
В	E, 0	-	-	-
С	F, 0	F, 1	-	•
D	-	-	B, 1	-
E	-	F, 0	A, 0	D, 1
F	C, 0	-	B, 0	C, 1

Table Q.5(a)

- 6 a. Prove the following theorems:
 - i) The equivalence partition is unique.
 - ii) If two states S_i and S_j of machine 'M' are distinguishable, then they are distinguishable by a sequence of length n-1 or less, where n is the number of states in 'M'.

 (08 Marks)
 - b. What is a tree? Explain the types of tree.

(06 Marks)

c. Draw the homing tree of m/c 'M' shown in table Q.6(c) and explain it. Write the response of m/c 'M' to the homing sequence 010. (06 Marks)

PS	NS, Z	
	$\mathbf{x} = 0$	x = 1
Α	B, 0	D, 0
В	A, 0	B, 0
C	D, 1	A , 0
D	D, 1	C, 0

Table Q.6(c)

7 a. What is a diagnosable sequence m/c? Construct testing table and graph for m/c shown in Table Q.7(a). (10 Marks)

PS	NS, Z	
го	x = 0	x = 1
A	B, 0	D, 0
В	A, 0	B, 0
С	D, 1	A, 0
D	D, 1	C, 0

Table Q.7(a)

b. Identify the m/c which is known to have two states and its response to the I/P response X is the o/p sequence Z, as shown below:

(10 Marks)

8 a. What is an experiment? Explain the types of experiments.

(05 Marks)

b. Prove the theorem:

If an n-state machine has a synchronizing, or sequences, then it has one such sequence whose length is at most $\frac{n(n+1)(n-1)}{6}$. (10 Marks)

c. Write a short note on synchronizing experiments.

(05 Marks)